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ABSTRACT
During pregnancy and lactation, mothers require significant
amounts of calcium to pass on to the developing fetus and suckling
neonate, respectively. Given the dependence of adult calcium con-
centrations and bone metabolism on vitamin D, one might anticipate
that vitamin D sufficiency would be even more critical during preg-
nancy and lactation. However, maternal adaptations during preg-
nancy and lactation and fetal adaptations provide the necessary cal-
cium relatively independently of vitamin D status. It is the vitamin
D–deficient or insufficient neonate who is at risk of problems, in-
cluding hypocalcemia and rickets. Due to poor penetrance of vitamin
D and 25-hydroxyvitamin D [25(OH)D] into milk, exclusively
breastfed infants are at higher risk of vitamin D deficiency than are
formula-fed infants. Dosing recommendations for women during
pregnancy and lactation might be best directed toward ensuring that
the neonate is vitamin D–sufficient and that this sufficiency is main-
tained during infancy and beyond. A dose of vitamin D that provides
25(OH)D sufficiency in the mother during pregnancy should pro-
vide normal cord blood concentrations of 25(OH)D. Research has
shown that during lactation, supplements administered directly to
the infant can easily achieve vitamin D sufficiency; the mother needs
much higher doses (100 �g or 4000 IU per day) to achieve adult-
normal 25(OH)D concentrations in her exclusively breastfed infant.
In addition, the relation (if any) of vitamin D insufficiency in the
fetus or neonate to long-term nonskeletal outcomes such as type 1
diabetes and other chronic diseases needs to be investigated. Am
J Clin Nutr 2008;88(suppl):520S–8S.

INTRODUCTION

Calcium and bone metabolism in adults depend heavily on
concentrations of vitamin D and its active metabolite 1,25-
dihydroxyvitamin D [1,25(OH)2D]. Without 1,25(OH)2D, the
body cannot absorb calcium and phosphorus adequately, second-
ary hyperparathyroidism supervenes, the skeleton loses mineral
content (secondary osteoporosis), and new bone is not ade-
quately mineralized (rickets or osteomalacia) (1). Hypocalcemia
can occur, but secondary hyperparathyroidism supports blood
calcium through skeletal resorption.

During pregnancy and lactation, mothers provide large
amounts of calcium to the developing fetus and suckling neonate,
respectively (2, 3). Given that adult calcium and bone metabo-
lism depend on vitamin D sufficiency, vitamin D sufficiency
would seem to be especially critical during pregnancy and lac-
tation. However, as this review shows, maternal adaptations dur-
ing pregnancy, lactation, and fetal development provide the nec-
essary calcium relatively independently of vitamin D. It is only

after birth that dependency on vitamin D becomes evident, at
least with respect to calcium metabolism and skeletal health.

Due to the relative paucity of data obtained during human
pregnancy and lactation, this review includes discussions of an-
imal data on vitamin D’s role in mammalian calcium metabo-
lism. Studies in humans should confirm all pertinent findings
from animal models, but this might never be possible for certain
aspects of pregnancy and fetal development.

To avoid an unduly lengthy reference list, I direct the reader to a
1997 comprehensive review by Kovacs and Kronenberg (2), with
�550 primary references on the issues discussed here, and several
recent reviews that cite studies published since 1997 (3–8).

ADAPTATIONS DURING PREGNANCY

During gestation, the human fetus accretes 30 g Ca on average,
of which 99% is contained within the skeleton. More than 150
mg/kg of this calcium is actively transferred each day across the
placenta during the third trimester.

Serum calcium concentrations (which include ionized,
protein-bound, and complexed fractions) fall early in pregnancy
as a result of the drop in serum albumin. This artifact of preg-
nancy’s hemodilution is physiologically unimportant and is not
evidence of true hypocalcemia. Ionized calcium concentrations,
the physiologically important fraction, do not change during
pregnancy. Parathyroid hormone (PTH), as measured by “intact”
assays, falls to the lower end of the normal range and can become
undetectable in North American and European women (no stud-
ies have used the newer “bio-intact” PTH assays). In contrast,
studies of women from Gambia, Asia, and other areas where
calcium and vitamin D intake are low have found that PTH
concentrations do not drop during pregnancy. Levels of other
hormones with potential calcium-regulating effects—including
estradiol, prolactin, placental lactogen, and the calcium-
regulating hormone parathyroid hormone-related protein
(PTHrP)—increase during pregnancy.

1 From the Faculty of Medicine–Endocrinology, Memorial University of
Newfoundland, St John’s, Newfoundland, Canada.

2 Presented at the National Institutes of Health conference “Vitamin D and
Health in the 21st Century: an Update,” held in Bethesda, MD, September
5-6, 2007.

3 Supported by the Canadian Institutes of Health Research, the National
Sciences and Engineering Research Council of Canada, and the Dairy Farm-
ers of Canada.

4 Address reprint requests to C Kovacs, Health Sciences Centre, 300
Prince Philip Drive, St John’s, Newfoundland A1B 3V6 Canada. E-mail
ckovacs@mun.ca.

520S Am J Clin Nutr 2008;88(suppl):520S–8S. Printed in USA. © 2008 American Society for Nutrition

 by guest on M
ay 11, 2012

w
w

w
.ajcn.org

D
ow

nloaded from
 

http://www.ajcn.org/


The pregnancy-induced adaptations to maternal calcium ho-
meostasis are illustrated in Figure 1. Doubling the rate or effi-
ciency of intestinal calcium absorption starting early in preg-
nancy appears to meet the fetal need for calcium. Skeletal
resorption can also provide mineral to the circulation, but evi-
dence is mixed on whether the maternal skeleton contributes
substantial amounts of calcium to the fetus. Bone resorption
markers are modestly increased during pregnancy (less than dur-
ing lactation), and bone biopsies from women at the time of
first-trimester abortions show histomorphometric evidence of
increased bone resorption. Older, longitudinal studies of bone
mineral density (BMD) during pregnancy (using single and dual-
photon absorptiometry) showed no change in BMD. Studies
using the more modern dual-energy X-ray absorptiometry 3–9
mo before planned pregnancies and 1–6 wk after delivery
showed no change or a 1–4% decrease in BMD at the spine or hip
between the first and second measurements. Serial ultrasound
measurements at the heel have shown apparent BMD loss during
pregnancy, but such peripheral measurements might have little
relevance to the clinically and physiologically important content
of the spine and hip. The maternal kidneys do not reclaim calcium
avidly during pregnancy; instead, urinary calcium excretion in-
creases in parallel with the increase in intestinal calcium absorption.

Rats and mice have a much shorter gestation period (22 and
19 d, respectively) and transfer 95% of their calcium to 8–12
fetuses per litter during the last 4–5 d of gestation. Ionized cal-
cium levels are stable until late pregnancy, when they can drop
during the rapid calcium transfer to the fetus. PTH is suppressed
early in pregnancy but can increase in late pregnancy. Skeletal
mineral content increases starting early in pregnancy, at least in
certain strains of rats and mice.

VITAMIN D METABOLISM DURING PREGNANCY

25-Hydroxyvitamin D [25(OH)D], the storage form of vita-
min D, readily traverses the hemochorial placentas of rats (9) and
probably crosses the hemochorial human placenta readily, such
that cord blood 25(OH)D concentrations are equal to or up to
20% lower than maternal concentrations (10, 11). Thus, for ne-
onates to be born with adult-normal 25(OH)D concentrations,
their mothers must be vitamin D–sufficient. Passage of 25(OH)D
from mother to fetus could reduce maternal levels, especially if
the mother is deficient in vitamin D; observational studies have
shown either no change or a modest decline in maternal 25(OH)D
concentrations during pregnancy (12, 13). No studies have ad-
dressed whether the ideal level of 25(OH)D during pregnancy
should differ from the level considered sufficient for nonpreg-
nant adults.

1,25(OH)2D does not readily cross the placentas of rats (14),
and 1,25(OH)2D concentrations are normally lower than mater-
nal values in fetal sheep, rats, mice, and humans (10, 11, 15, 16).
The low fetal concentrations of 1,25(OH)2D reflect the low fetal
PTH and high phosphorus concentrations, which suppress renal
1�-hydroxylase. Although PTHrP is elevated in the fetal circu-
lation, it appears to be less able to stimulate the renal 1�-
hydroxylase than PTH (17, 18).

Total (free and bound) 1,25(OH)2D concentrations double or
triple in the maternal circulation starting in the first trimester, but
studies have only shown increased free concentrations during the
third trimester. This increase is due to maternal synthesis by the
renal 1�-hydroxylase (19, 20). Some have suggested that the
fetus and placenta contribute to the maternal rise, but this is not
the case, as shown by both animal studies (reviewed in detail in
reference 2) and a clinical case of an anephric woman who had

FIGURE 1. Schematic illustration contrasting calcium homeostasis in human pregnancy and lactation compared with normal. Arrow thickness indicates
a relative increase or decrease with respect to the normal, nonpregnant state. Adapted from reference 2, copyright 1997, The Endocrine Society.
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only a negligible increase in 1,25(OH)2D concentrations during
pregnancy (21).

Some researchers have argued that the doubled 1,25(OH)2D
concentrations explain the doubling of intestinal calcium absorp-
tion and indicate the maternal adaptation’s dependence on vita-
min D sufficiency, but this explanation might be incomplete.
Intestinal calcium absorption doubles in humans and rodents
early in pregnancy, well before free 1,25(OH)2D concentrations
increase late in pregnancy (2, 7). Furthermore, pregnant vitamin
D–deficient rats and mice lacking the vitamin D receptor (VDR
null) experience a marked up-regulation of intestinal calcium
absorption to the same high rate as normal pregnant rats and mice
(22–24). Animal studies indicate that prolactin and placental
lactogen might stimulate intestinal calcium absorption indepen-
dently of 1,25(OH)2D (25, 26). Although the data show that
pregnant animals do not require 1,25(OH)2D and its receptor for
intestinal calcium absorption doubling during pregnancy, no
clinical study has compared intestinal calcium absorption during
pregnancy in vitamin D–deficient and sufficient women.

VITAMIN D AND MATERNAL OUTCOMES FROM
PREGNANCY

Animal data

Animal models used to examine vitamin D physiology during
pregnancy and fetal development include severe vitamin D de-
ficiency in rats (27–29), a naturally occurring null mutation of the
1�-hydroxylase in pigs (30), and VDR ablation in mice (24, 31).
The 1�-hydroxylase has also been ablated in mice, but the null
mice are infertile (32, 33).

In each of these models, the adult female has hypocalcemia,
hypophosphatemia, rickets or osteomalacia, and reduced fertility
with smaller litters. When such rats and mice do conceive, a few
sporadic (possibly hypocalcemic) maternal deaths occur late in
pregnancy during the interval of rapid calcium transfer to the
fetus. Investigators have observed deaths in late pregnancy when
giving rodents a low-calcium diet, which probably indicates that
mothers rely on vitamin D and dietary calcium sufficiency to
maintain their own blood calcium during ongoing rapid losses to
multiple fetuses. In addition, vitamin D–deficient rats and VDR-
null mice increased their skeletal mineral content during preg-
nancy (24, 29), although 1 study in vitamin D–deficient rats
showed a small loss of skeletal mineral content during pregnancy
(34). Studies in vitamin D–deficient rats and VDR-null mice
have also shown that intestinal calcium absorption is upregulated
to the normal pregnant level despite the respective absence of
1,25(OH)2D or its receptor.

Human data

No studies have focused specifically on vitamin D deficiency
during pregnancy; the available data come from observational
studies (12, 13, 35–41) and a few clinical trials of vitamin D
supplementation (42–50) in pregnant women ranging from vita-
min D deficient to sufficient. Severe vitamin D deficiency causes
modest hypocalcemia and secondary hyperparathyroidism in
nonpregnant adults, but no reports have documented worsening
during pregnancy. Collectively, serum calcium concentrations
were normal in women ranging from vitamin D deficient to
sufficient. Many observational and randomized trials of pregnant
women consistently showed that daily or monthly vitamin D2 or

D3 supplementation regimens can increase maternal 25(OH)D
concentrations, but none has shown any maternal benefit from
such supplementation beyond the increase in circulating
25(OH)D. If the animal data apply to humans, they suggest that
intestinal calcium absorption increases during pregnancy in
women with severe vitamin D deficiency.

VITAMIN D AND FETAL OUTCOMES

Animal data

Studies of severely vitamin D–deficient rats (28, 51, 52), 1�-
hydroxylase-deficient pigs (30), and VDR-null mice (31) have
consistently shown strikingly normal fetal blood calcium, phos-
phorus, and PTH concentrations; fetal weight; and skeletal min-
eral and calcium content. 1�-Hydroxylase-null mice are normal
at birth, but the literature includes no extensive studies of their
fetal chemistries and skeletal mineral content (32, 33). Research-
ers have assayed placental calcium transfer from mother to fetus
indirectly in vitamin D–deficient rats (53) and directly in VDR-
null fetuses (31); calcium concentrations were normal to nonsig-
nificantly increased in both. Clearly, fetal calcium homeostasis
and skeletal development and mineralization are independent of
vitamin D, 1,25(OH)2D, and its receptor. The placenta provides
calcium without relying on vitamin D metabolites, and vitamin
D–deficient and VDR-null placentas express normal concentra-
tions of the vitamin D–dependent factors calbindin-D-9K and
Ca2�-ATPase, which are important for intestinal calcium ab-
sorption and calcium homeostasis in adults (31, 53, 54).

Offspring of VDR-heterozygous mice (wild-type, heterozygous-
deleted, and VDR-null fetuses) were indistinguishable with re-
spect to calcium homeostasis, weight, skeletal size, morphology,
and mineral content. Fetuses of VDR-null mothers had a lower
birth weight than did those with VDR-heterozygous mothers, but
their proportionately smaller skeletons had a normal mineral
content (31). Researchers did not observe this global reduction in
fetal size and weight from VDR-null mothers in vitamin D de-
ficiency models, which could indicate that absence of VDR af-
fects fetal growth in a way that absence of vitamin D does not.

In animal models of maternal hypoparathyroidism, fetuses can
develop secondary hyperparathyroidism, skeletal demineraliza-
tion, and fractures (2). Researchers have not observed this with
vitamin D deficiency, perhaps because the maternal calcium
level is usually less low from vitamin D deficiency than from
hypoparathyroidism.

Human data

No systematic studies have examined skeletal mineral content
among normal, vitamin D–insufficient, and vitamin D–deficient
fetuses; thus, we do not know whether vitamin D–deficient or
–insufficient human fetuses have normal skeletal mineral con-
tent as studies have shown for vitamin D–deficient animals.
Clinical experience reported in textbook chapters and reviews
indicates that fetuses with severe vitamin D deficiency are gen-
erally born with normal serum calcium concentrations and skel-
etal morphology, and rickets does not develop (or clinicians do
not recognize it) until weeks to months after birth (55–57). The
observational and clinical studies of human pregnancy cited
above showed no relation of cord blood 25(OH)D concentrations
to cord blood calcium or PTH concentrations.
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Those observational studies and clinical trials showed that
providing vitamin D to pregnant mothers increases cord
25(OH)D concentrations at term but has no effect on fetal weight
or skeletal parameters. Several studies found no effect of mater-
nal vitamin D supplementation on cord blood calcium concen-
trations (42, 48, 49), but 2 small studies in Asian women showed
a small but significant increase in cord calcium concentrations
(46, 47). Another study compared administration of 1200 mg Ca
and 10 �g (400 IU) vitamin D (as dairy) or 1200 mg Ca alone (as
orange juice) with placebo and found greater birth weight and
total body calcium levels in the fetuses whose mothers received
the dairy product but no change in other skeletal variables such
as length and head circumference (50). The authors do not know
whether the results were due to the dairy product’s vitamin D
content or its nutritional content compared with the supplement.

Studies of mother-infant pairs have shown no convincing re-
lation between maternal vitamin D sufficiency and fetal out-
comes at birth. One study found no association between third-
trimester maternal 25(OH)D concentrations and any fetal
measurement, but offspring of women with 25(OH)D concen-
trations �25 nmol/L during the third trimester had a knee-heel
length 2.7 mm shorter (not statistically significant) after the au-
thors corrected for gestational length (39). Another study found
no association of third-trimester 25(OH)D concentrations with
any fetal measurement, including weight, head circumference,
arm circumference, and length (40, 41). No systematic study has
investigated skeletal lengths and calcium content (by dual-
energy X-ray absorptiometry) in newborns stratified by vitamin
D status, but the available animal and human data indicate that
vitamin D status should have little or no effect on the fetal skel-
eton’s length and mineral content.

Overall, whereas animal studies have shown normal serum
calcium concentrations, skeletal lengths, and skeletal mineral
content in fetuses despite extreme disturbances in vitamin D
physiology, none of the human studies has approached this level
of careful, systematic investigation. Consequently, the possibil-
ity remains that the human studies lacked the power or sensitive
outcome measures required to detect differences among normal,
vitamin D–insufficient, and vitamin D–deficient fetuses.

ADAPTATIONS DURING LACTATION

Near-exclusive breastfeeding for 6 mo leads, on average, to
maternal calcium loss 4 times higher than in pregnancy because
lactation can require 150–300 mg Ca � kg�1 � d�1. Characteristic
findings (2, 3, 5) in the blood chemistries of healthy lactating
women include that serum calcium and ionized calcium concen-
trations are normal, although some reports suggest that ionized or
corrected serum calcium concentrations rise slightly but stay
within the normal range. Phosphorus can rise above the normal
range, probably because of accelerated resorption from the skel-
eton (discussed below). PTH concentrations, as measured by
“intact” assays, fall to the lower end of the normal range or below,
except in women known to have a low calcium or vitamin D
intake, including women from Asia and Gambia. Estradiol con-
centrations are low and near menopausal values. Prolactin con-
centrations increase at each suckling, but the basal concentra-
tions between feeds decline with time postpartum. PTHrP
concentrations are higher than PTH concentrations in nonpreg-
nant women and show some pulsatility in response to suckling.

The lactation-induced adaptations to maternal calcium ho-
meostasis are illustrated in Figure 1. As described in detail else-
where (5, 6, 8), PTHrP (produced by the lactating breast) in
combination with low estradiol concentrations appears to drive
the main physiologic adaptation to meet the calcium demands of
lactation (Figure 2). Suckling and prolactin both inhibit ovarian
function and stimulate PTHrP. Together, PTHrP and low estra-
diol concentrations stimulate skeletal resorption, and bone min-
eral content declines by 5–10% over 2–6 mo of near-exclusive
lactation. Bone resorption markers show marked elevation with-
out a compensatory increase in bone formation. Intestinal cal-
cium absorption rates drop to the normal range after delivery.
Renal calcium reabsorption rates increase, presumably due to
PTHrP, which mimics the actions of PTH on the renal tubules.

Lactating rodents have a similar adaptive mechanism and lose
25–35% of their trabecular bone mineral content during 3 wk of
lactation. Similarly, PTH concentrations are usually low but in-
crease with litter size, estradiol concentrations are low, and
PTHrP concentrations are high. Intestinal calcium absorption
rates are still approximately double those of nonpregnant animals
(22, 58), which might be necessary to meet the proportionately
greater calcium demands of multiple suckling pups. Animal
models also show that local actions of the calcium receptor and
PTHrP within mammary tissue regulate milk’s calcium content,
at least partly.

VITAMIN D METABOLISM DURING LACTATION

Vitamin D passes readily into breast milk, 25(OH)D passes
very poorly, and 1,25(OH)2D does not appear to pass at all (2).
1,25(OH)2D concentrations fall rapidly after pregnancy and are
normal during lactation, except in women nursing twins, who
have increased 1,25(OH)2D concentrations (2). 25(OH)D con-
centrations were stable in 1 study (59) but fell during lactation in
another (60). Breast milk should only account for a small loss of
25(OH)D; seasonal variation and differences in vitamin supple-
ment use before and after pregnancy might have confounded the
results. In lactating rats and mice, 1,25(OH)2D concentrations
remain elevated until weaning (2).

VITAMIN D AND MATERNAL OUTCOMES FROM
LACTATION

Animal data

Not only are 1,25(OH)2D concentrations elevated during lac-
tation in normal rodents, but the concentrations respond to vary-
ing lactation demands. When stressed by a low-calcium diet or
large litter size, 1,25(OH)2D concentrations increase even fur-
ther (61, 62), perhaps because a mechanism increases intestinal
calcium absorption further when the mother faces extra de-
mands. However, mothers do not require vitamin D sufficiency
or responsiveness to 1,25(OH)2D for normal lactation. Vitamin
D–deficient rats and VDR-null mice lactate normally and expe-
rience similar skeletal losses to controls (24, 29, 34), although 1
study found that vitamin D–deficient rats lose more skeletal
mineral content than do normal rats (63). Intestinal calcium ab-
sorption in lactating vitamin D–deficient rats is upregulated to
the same level as in vitamin D–sufficient rats (22, 58).
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Human data

Observational studies (59, 60, 64–67) and clinical trials (68–
75) have generally shown that providing vitamin D to lactating
mothers increases their 25(OH)D concentrations but has no sig-
nificant effect on any other maternal outcome (68, 69, 72–74).
Randomized trials and observational studies of dietary calcium
intake’s effect on skeletal resorption during lactation in North
American and Gambian women have consistently shown that
very low to well-above-normal calcium intakes had no effect on
skeletal demineralization during lactation but did increase uri-
nary calcium excretion (76–81). Most of these studies compared
calcium intake and did not manipulate vitamin D intake directly,
but a test of vitamin D supplementation during lactation would
probably find no effect on skeletal resorption. Limited studies of
lactating adolescents have reported greater skeletal losses than in
older women, perhaps due to poor calcium intake and nutrition in
the adolescents (82, 83). In other studies, maternal vitamin D
status or vitamin D supplementation did not affect breast milk
calcium content (73, 84).

Thus, while one might expect that low vitamin D and calcium
intakes would accentuate skeletal losses to maintain breast milk
calcium content, most studies suggest otherwise. This is consis-
tent with the animal studies and might indicate that skeletal
resorption provides most of the calcium needed during lactation,
regardless of dietary calcium intake. The obligatory rise in
PTHrP and fall in estradiol programs the lactational loss of skel-
etal calcium content (Figure 2), and vitamin D status does not
influence this loss. Increasing calcium and vitamin D intake
during lactation might simply increase urinary calcium excretion
and, thereby, kidney stone risk.

VITAMIN D AND NEONATAL AND INFANT
OUTCOMES

Animal data

In vitamin D–deficient rats (51, 52), 1�-hydroxylase-null pigs
(30), VDR-null mice (85, 86), and 1�-hydroxylase-null mice

FIGURE 2. The breast is a central regulator of skeletal demineralization during lactation. Suckling induces prolactin (PRL) release. Suckling and prolactin
both inhibit the hypothalamic gonadotropin-releasing hormone (GnRH) pulse center, which in turn suppresses the gonadotropins [luteinizing hormone (LH)
and follicle-stimulating hormone (FSH)], leading to low levels of the ovarian sex steroids [estradiol (E2) and progesterone (PROG)]. Several factors control
parathyroid hormone-related protein (PTHrP) production and release from the breast, including suckling, prolactin, and the calcium receptor. PTHrP enters the
bloodstream and combines with systemically low estradiol concentrations to markedly up-regulate bone resorption. Increased bone resorption releases calcium
and phosphate into the bloodstream, which then reaches the breast ducts and is actively pumped into the breast milk. PTHrP also passes into milk at high
concentrations, but we do not know whether swallowed PTHrP plays a role in regulating the neonate’s calcium physiology. Calcitonin (CT) might inhibit skeletal
responsiveness to PTHrP and low estradiol. Reprinted from reference 8, copyright 2005, with kind permission of Springer Science and Business Media B.
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(32, 33), rickets and failure to thrive are not apparent until near
weaning. Studies of vitamin D–deficient rats and VDR-null mice
confirm that skeletal mineral content is normal at birth and during
the first 2 wk after birth, after which the animals develop pro-
gressive hypocalcemia, hypophosphatemia, and histomorpho-
metric evidence of rickets. The sequence of events parallels the
maturation of intestinal calcium absorption postnatally, which
develops from nonsaturable passive absorption facilitated by
lactose to an active, saturable process that depends on
1,25(OH)2D (87–89).

Human data

No systematic studies have addressed the effects of vitamin D
status on neonatal or infant calcium and bone status parameters;
case reports and clinical experiences described in textbook chap-
ters constitute the main data. Vitamin D deficiency predisposes
newborns to neonatal hypocalcemia, and clinicians do not usu-
ally diagnose (or recognize) rickets for several months after birth
(55–57). However, in areas where vitamin D deficiency is en-
demic and clinical awareness is high, clinicians often identify the
characteristic changes of rickets soon after birth (90, 91).

After birth, serum calcium concentrations drop from their high
fetal levels to a trough below the adult level, followed by a
gradual recovery over several days to the adult level (2, 92).
Although vitamin D deficiency increases neonatal hypocalcemia
risk, it is unclear whether vitamin D insufficiency causes hy-
pocalcemia. Vitamin D supplementation during pregnancy re-
duced blood calcium excursion in neonates in 1 study and re-
duced hypocalcemia incidence in another (42, 48, 49).

Standard 10 �g (400 IU) vitamin D supplements given to
lactating mothers do not increase infant 25(OH)D concentrations
because of 25(OH)D’s poor penetrance into milk; a dose of 100
�g (4000 IU) per day was required to raise neonatal 25(OH)D
concentrations to the perceived sufficient range of �75 nmol/L
(72). Dosing the infant directly with smaller doses of vitamin D
produces normal 25(OH)D concentrations but vitamin D supple-
mentation in otherwise healthy infants (via mother’s milk or
directly to the infant) did not improve the infants’ blood calcium
concentrations, length, weight, or other parameters.

One study found no association between third-trimester maternal
25(OH)D concentrations and newborn weight, length, or head cir-
cumference indexes (40). Follow-up assessments of these children
also found no effect at 9 mo or 9 y of age (40, 41). However, bone
mineral content was apparently lower in 9-y-old children whose
mothers had had low 25(OH)D (�20 nmol/L) concentrations dur-
ing the third trimester (40), which might indicate the effect of in
utero vitamin D status to program peak bone mass that will be
achieved later in life (93, 94). Because the investigators did not
measure bone mineral content at birth or 9 mo, it is not clear whether
this is truly a mechanistic association [low fetal 25(OH)D program-
ming low bone mineral content] or is related to environment and
nutrition [because a pregnant woman with a low 25(OH)D level
might be more likely to provide poor nutrition to her child, have
lower socioeconomic status, etc].

Observational studies have shown that up to 95% of children
with vitamin D–deficient rickets had been breastfed (95), which
is consistent with the milk’s low vitamin D and 25(OH)D con-
tents unless the woman takes supplements aggressively. Supple-
menting the mother during pregnancy to provide the infant with
normal 25(OH)D stores at birth or supplementing the infant
directly can prevent childhood rickets.

Increasing evidence from observational studies indicates that
vitamin D deficiency and insufficiency at older ages might in-
crease the risk of chronic diseases such as type 1 diabetes and
multiple sclerosis. In many of these diseases, the association is
with latitude and, by inference, with vitamin D status. For most
of these associations, no specific data relate the disease to fetal or
neonatal vitamin D sufficiency. However, observational studies
indicate that vitamin D insufficiency during pregnancy is asso-
ciated with increased prevalence of islet cell antibodies in off-
spring, and a history of vitamin D supplementation in pregnant
women (96, 97) or infants (98) is associated with lower childhood
incidence of type 1 diabetes. Investigators need to conduct ran-
domized trials on this association before clinicians recommend
vitamin D to reduce the incidence of type 1 diabetes. Although
human fetuses might suffer no skeletal problems from vitamin D
deficiency and insufficiency, they could have an increased risk of
nonskeletal problems, such as type 1 diabetes, in childhood.

POSTWEANING SKELETAL RECOVERY

After weaning, the maternal skeleton rapidly recovers the min-
eral content lost during lactation. In clinical studies, the recovery
apparently occurred within 3–6 mo, although many studies did
not follow the women after weaning. Observational studies gen-
erally indicate that a history of lactation confers no increased risk
of low bone mass, fractures, or osteoporosis (2, 99).

This recovery is especially remarkable when one considers
that the adult skeleton normally recovers incompletely, if at all,
from bone mass losses induced by weightlessness, bed rest, cor-
ticosteroid therapy, estrogen deficiency, etc. We do not know
what mechanism explains skeletal recovery after lactation. One
observational study showed that intestinal calcium absorption
was upregulated by 19% during postweaning recovery (71), but
the investigators assayed only 1 time point and the magnitude
was quite modest.

Lactating rodents recover completely within 10–21 d, depend-
ing on the rodent strain and technique used. No studies have
systematically measured intestinal calcium absorption or calcio-
tropic hormone concentrations during the recovery interval.

Animal data

Two studies of vitamin D–deficient rats noted some recovery
of mineral content after lactation, with the final value exceeding
the prepregnancy value in 1 study (29, 34). In preliminary studies
of VDR-null mice, skeletal recovery after lactation was complete
and final bone mineral content exceeded the prepregnancy level
by 50% (24). Thus, animal studies suggest that vitamin D status
plays no role in skeletal recovery after lactation.

Human data

No study has examined the impact of vitamin D deficiency or
insufficiency on the skeleton’s ability to recover from lactational
losses. One study of lactating women observed that PTH and
1,25(OH)2D concentrations were higher than normal at 1 time
point assayed during postweaning recovery (100). No other
study has examined this, so we do not know whether the skeleton
requires vitamin D sufficiency to recover. Vitamin D require-
ments might be higher during postweaning recovery than after,
but this is also speculation.

VITAMIN D IN PREGNANCY AND LACTATION 525S

 by guest on M
ay 11, 2012

w
w

w
.ajcn.org

D
ow

nloaded from
 

http://www.ajcn.org/


CONCLUSIONS

Vitamin D deficiency during pregnancy and lactation can lead
to hypocalcemia and rickets in neonates and, especially, infants,
but animal data and limited human data suggest that fetuses are
protected from the adverse skeletal effects of vitamin D defi-
ciency. Adaptations in maternal calcium and bone metabolism
appear to occur independently of vitamin D status. Careful study
of newborns with vitamin D–deficient mothers might reveal
deficits in skeletal mineral content by dual-energy X-ray absorp-
tiometry. Given the apparent relative protection of mothers and
fetuses from severe vitamin D deficiency, vitamin D insuffi-
ciency probably does not harm the fetus, infant, or mother. Dos-
ing recommendations for mothers during pregnancy should be
aimed at preventing problems in neonates and infants, and a
vitamin D dose sufficient for the mother during pregnancy should
produce normal cord blood 25(OH)D concentrations at birth.
Giving relatively small doses of vitamin D directly to the infant
or supplementing the mother with 100 �g (4000 IU) vitamin D
daily should maintain normal 25(OH)D concentrations in exclu-
sively breastfed infants without harming the mother. Researchers
need to study aspects of the role of vitamin D sufficiency and
supplementation in pregnancy and lactation, especially the rela-
tion (if any) between vitamin D insufficiency in utero and infancy
and long-term outcomes such as type 1 diabetes, multiple scle-
rosis, and other chronic diseases.
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